

Structured Approaches for Forest fire Emergencies in Resilient Societies

This project aims to create a novel forest fire emergency management system capable of acting along the whole emergency cycle. It will couple heterogeneous **Big Data** such as Earth Observation, in-field data and social media with advanced models based on Artificial Intelligence to make citizens, first responders and decision makers more resilient against forest fires.

Earth Observations Data from the COPERNICUS space, service segment, and GEOSS.

Fire sensors Smoke detection using cameras and sensors placed in forests.

Topography & Open Data Fuel & topographic data, population distribution and critical infrastructures to predict the fire progression.

Social media & other apps

Real time social media analysis to detect and extract information. An intelligent Chatbot to promote citizens awareness and enable a crowdsourced in-field data collection for all users, including volunteers and professional responders.

Weather forecasts Sub-seasonal weather forecast models to increase forest fire early warnings.

The project in numbers

3.25 M Total cost

14 partners 7 countries

SAFERS Open Platform

The open source SAFERS Platform is a **Big Data Emergency** Management System that uses AI and the outputs of the intelligent services to provide decision support.

Risk maps

To detect fire-prone areas.

Early warnings

Early fire detection thanks to fire sensors and cameras.

Fire delineation and propagation

Coupling EO, weather forecasts, in-situ and crowdsourced data for generating delineation and propagation maps, enabling a better decision-making in the response phase.

Habitat recovery monitoring

Assess impacts on ecosystems in terms of soil and biodiversity to better plan restoration actions.

Impact assessment

Impact estimation in terms of economic losses for better decision-making

PHASE A

Prevention and Preparedness

SAFERS creates an early warning system and risk **maps** to allow all stakeholders to be ready for a possible forest fire as well as to inform citizens. It integrates information extracted from **different sources**, including social media and mobile apps.

PHASE B Detection and Response

SAFERS uses **multiple data sources** with advanced **AI** to map the fire status and to predict its propagation, creating actionable information for first responders and decision makers. It allows in-field citizens, volunteers, and professional responders to **provide situational updates** via an Intelligent Chatbot.

PHASE C

Restoration and Adaptation

To **assess the impacts** of forest fires, SAFERS monitors the regeneration of **damaged ecosystems** and computes the economic losses resulting from burned areas, suggesting strategies to reduce the impacts of future emergency events.

www.safers-project.eu **@SAFERS_H2020**

Stevenson Alpha Pau Costa Foundation
CSI Piemonte S.I.S 2B Ellinki Omada Diasosis Somateio Ministry of National Defence, Greece

Italy, France, Spain & Greece

1 open platform

For forest fire management

Citizens and volunteers play an active role in the emergeny cycle

First responders have accurate information about the forest fire status and its evolution

Authorities have support for decision-making

project has received funding from the European Union's Horizon 2020 research and innovation programme